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Abstract. Previously it was shown that the inverse scattering transform for the modified 
K d v  equation is a canonical transformation under the vanishing boundary condition, with 
the scattering data being essentially a set of action-angle variables (Flaschka and Newell). 
Recently, we have developed the inverse scattering method for the modified KdV equation 
under the non-vanishing condition u ( x ,  f )  + b, as x --* *a, where b is an arbitrary constant. 
In this investigation we prove that, under the above non-vanishing condition, the inverse 
scattering transform for the modified KdV equation is a canonical transformation and the 
scattering data are essentially a set of action-angle variables. Hence the modified KdV 

equation is completely integrable under the non-vanishing condition u ( x ,  t )  + b as x + * W .  

1. Introduction 

The inverse scattering method of the M K d v  equation 

U, + 6u2u, + U,,, = 0 

was established under the non-vanishing condition 

u ( x ,  t ) +  b as x +  *a2 (2) 

where b is an arbitrary non-zero constant (Au Yeung et al 1984). The time variations 
of the scattering data were found to satisfy an infinite system of ordinary differential 
equations which can be trivially solved (Au Yeung et a1 1984). This property is similar 
to that of the vanishing case u ( x ,  t )  + 0 as x + f CO (Wadati 1972). Now, in the vanishing 
case the inverse scattering transform for the MKdV equation is a canonical transforma- 
tion, with the scattering data being essentially a set of action-angle variables (Flaschka 
and Newell 1975, Newell 1980). It is then suggestive to ask whether the inverse 
scattering transform under the non-vanishing condition u ( x ,  t )  + b as x + f CO is a 
canonical transformation and whether the scattering data are essentially a set of 
action-angle variables. 

In this paper we look at the above questions. We shall show that, under the 
non-vanishing condition (2), the M K d v  equation represents a Hamiltonian system and 
the inverse scattering transform is a canonical transformation, with the scattering data 
being essentially a set of action-angle variables. We also obtain an infinite set of 
conserved integrals of the M K d v  equation under the non-vanishing condition (2).  

0305-4470/88/183575 + 18$02.50 @ 1988 IOP Publishing Ltd 3575 
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For the convenience of discussion, we give in $ 2 a brief review of some aspects 
of the inverse scattering transform of the M K d v  equation under the non-vanishing 
condition (2). In $ 3  the M K d v  equation is shown to be a Hamiltonian under the 
non-vanishing condition. We prove in $ 4 that the inverse scattering transform of the 
M K d v  equation under the non-vanishing condition is a canonical transformation, with 
the scattering data being of the action-angle type. In 9 4 we also obtain an infinite 
set of conserved integrals of the M K d v  equation under the non-vanishing condition. 
Some conclusions will be given in § 5. 

2. The inverse scattering transform of the MKdv equation under the non-vanishing 
condition u(x, t )  + b as x + f 00 

The inverse scattering method of the M K d v  equation under the non-vanishing condition 
(2)  associates with the AKNS problem 

where 

4 x 1  = - d X )  d x )  = u ( x )  (4) 

(Kawata and Inoue 1977, 1978, Au Yeung er a1 1984). In the method solutions 
@*(A, 5) = (C#JT(A, 5), C#J;(h, 5)) to the AKNS problem are defined by the following 
boundary conditions: 

where 

and 

5 = ( A ~  - ~ i ) ” ~  A i =  -bZ. 
The scattering matrix 

(7)  

is defined by 

@-(A, 5) = @ + ( A ,  5) S(A, 5). (8)  
The function 5 = ( A z  - hi)’” is multivalued and it is set to be single-valued by introduc- 
ing two Riemann surfaces. A cut is set in the region ( - A o ,  A,) of the pure imaginary 
axis. The upper (lower) Riemann surface is defined to be & + A  ( , $ + - A )  as l A l + C O  

and the sign of Im ,$ is equal (opposite) to the sign of Im A on the upper (lower) surface. 
The scattering element Sll(A, 5) is analytic in A in the region Im [> 0 of the two 

Riemann surfaces (Kawata and Inoue 1977, 1978) and the zeros of S,,(A, 5) in this 
region are just the eigenvalues of the A K N S  problem. Let A k r  k = 1 , 2 , .  . . , N, be the 
zeros of Sll(A, 5) in the region Im 5> 0 of the upper Riemann surface. 
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Define m ( A )  and pl(A, 5) by 

m ( A )  = S 2 i ( A ,  5)/5* dSii/dA 

Pl(A, 5) = S 2 l ( A ,  5)/Sll(A, 5). 

(9) 

(10) 

and 

The set { A k ,  m(Ak) ,  k = 1 , 2 , .  . . , N ;  pl(A, 6 ) )  is the scattering data under the non- 
vanishing condition (2) (Au Yeung er a1 1984). The mapping u ( x ) +  
{hk,  m ( A k ) ,  pl(A, 5)) is the inverse scattering transform of the M K d v  equation under 
the non-vanishing condition. 

Certain symmetries exist in the scattering matrix S(A, 5) (Au Yeung er al 1984). 
These symmetries are as below: 

3. The MKdv equation as a Hamiltonian under the non-vanishing condition u(x, t )+  b 
as x + f m  

We shall show that the M K d v  equation represents a Hamiltonian system under the 
non-vanishing condition (2). Consider the functional H[ U ]  defined by 

[ u4 - U’, - b4] dx. (19) H [ u ] =  -; 
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This functional is well defined under the non-vanishing condition u(x, t )  + b as x + *a. 
The variational derivative 6H/6u(x)  is, from (19), 

~ H / ~ U ( X ) = - ~ U ~ -  uXx. (20) 

From (20) we see that the equation 

is identical to the M K d v  equation. In view of the well known property of the operator 
a/ax (Gardner 1971) we conclude that equation (21) is a Hamiltonian. Hence the 
M K d v  equation represents a Hamiltonian system under the non-vanishing condition, 
and the Hamiltonian is equal to H [ u ] .  The phase space consists of functions u(x) 
which tend to b at infinity. Also, the corresponding Poisson bracket of any two 
functionals f[u] and g[u] is given by 

4. The inverse scattering transform of the MKdv equation as a canonical 
transformation under the non-vanishing condition u(x ,  t )  -+ b as x -P koo 

In this section we will show that under the non-vanishing condition (2), the inverse 
scattering transform for the M K d v  equation is a canonical transformation. As already 
discussed in 0 2 the scattering matrix 

where 
q* = -r* = b. 

From (8) we have 

as 
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Next, using the AKNS problem (3) and the boundary conditions ( 5 0 )  we obtain 
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where A , ,  i = 1,2, . . . , N, are the zeros of SII(A, 5) in the region Im 5 > 0 of the upper 
Riemann surface and 

(see 0 2). Also, defining b,, i = 1 , 2 , .  . . , N, by 

b, S 2 1 ( A i ,  ti) 

we then have 

In the following we will use the variational derivatives (28), (29), (30) and (32) to 
calculate the commutators {Sll(A, 51, S2,(A’, 5’11, {Sll(A, 51, Sll(A‘, &’)I, 
{S,,(A, t), &(A‘,  5’)) and {In A i ,  In bj} .  We first calculate {Sll(A, 5), S21(A’, 5’)). From 
(22) we have 

Substituting (28) and (29) into (33)  we obtain 

{SldA, 5), S 2 1 ( A ’ ,  5’)) 

Using the AKNS problem (3)  we obtain from (34) that 

where 
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Finally, applying the boundary conditions ( 5 a )  and (27) to (35) we obtain the following 
commutation relations (see the appendix): 

{In Sll(A, 5), In S21(A’, 6’)) 

where A and A ‘  are either real or pure imaginary and 

{Sll(Ai, E t ) ,  S,l(Aj? 5j)I = - A J > l ( A z ,  ti)s\l(At) * 6, (38) 

for i , j = 1 , 2  , . . . ,  N. 
Next, we consider the commutator {S,,(A, t), Sl,(A’, 5’)). From (22) we have 

Substituting (28) into (39) we obtain 

{Sll(A, 51, SIl(A’, 5’)) 

Using the AKNS problem (3) we obtain from (40) that 

where 

Applying the boundary conditions ( s a )  and (27) to (41) we obtain the following 
commutation relations (see the appendix): 

{In SII(A, 5), In Sll(A’, 5’)) = 0 (44) 
where A and A ’  are either real or pure imaginary. 

commutation relations: 
By a similar calculation to those outlined above we can also obtain the following 

{ s ~ l ( A t ,  ti), S21(Aj, 5 , ) )=0 i , j = 1 , 2  , . . . ,  N (45) 
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and 

{In S 2 l ( A ,  61, In S 2 1 ( A ' ,  6 ' ) )  = 0 (46) 

Using the commutation relations (37),  (38)  and (43)-(46) we arrive at the following 
where A and A '  are either real or pure imaginary. 

canonical commutation relations: 

{ Q A ,  p A ' ) = 6 ( 5 - 6 ' )  { Q A ,  Q:}=O (47)  

and 

{ Q l ,  6) = 68, {Q,,Q,) = 0 {P, ,  4)  = 0 (48) 

for i, j = 1 , 2 , .  . . , N, where 

QA = arg S 2 * ( A ,  5) (49) 
= ~ l n l S l l ( A ,  -5 01 

where A is either ( i )  real positive or ( i i )  pure imaginary with O <  - iA  < lb/ ,  and 

P, = -In A,  QI = In S 2 1 ( A t ,  51) i = 1 , 2  , . . . ,  N. (50) 

Suppose that, among the N eigenvalues A , ,  A * ,  . . . , A N ,  we have that p k ,  k =  
1,.  . . , r, are pure imaginary and that U', U = * l ,  1 2 , .  . . , is, such that Re ut # 0 and 

(51) 

That is, { p i , .  . . , pr,  uk1 ,  u i 2 , .  . . , c r + s } = { A l r . .  . , A N }  and N = r+2S. The variables 
P, and QI which correspond to the uu are not real (i.e. they are complex quantities). 
For the convenience of later discussion we introduce the following real variables: 

* = - U O .  

Pk = -1n/pk/ qk =ln/s21(pk, t(Pk))l k =  1 , .  , . , r (52) 

and 

Using the commutation relations (48) we obtain the following canonical commutation 
relations: 

for U, U' = 1,2, . . . , S, and all other commutators are zero. 
Now in view of the canonical commutation relations (47) and (55)-(57) we conclude 

that the inverse scattering transform for the M K d v  equation under the non-vanishing 
condition (2) is a canonical transformation and the scattering data are essentially a 
set of canonical variables. 
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Next, we will determine the dependence of the Hamiltonian H (defined by (19)) 
In view of the boundary on the canonical variables PA, Q A ,  Pk, q k ,  nu, vu, 7, and 

condition (27) we have for Im 5 > 0 that 

where 4 T 2 ( A ,  5) is the second component of C$;(A, 5). From (58) we get 
T 

(59) 

where 

Also, in view of the fact that +;(A, 5, x )  satisfies the AKNS problem (3)  we arrive at 
the following Ricatti equation in U, -it - iA : 

d u,-i(-iA 
U- ( dx ) + (U, - it-iA)’+ U’ = -2iA(u, - i t  -iA). 

Using the Ricatti equation (61) we can obtain the following power series expansion 
of U, - i t  - i A  : 

where 

f-l = -2i 

f o  = U,/ U 

f l = u  2 +-(-) d U, 
dx U 

fi = - uu, + - d [ - 1 (-) U, + 2 U2 + - d (-) U, ] 
dx 2 U dx U 

f3 = uu,, + u4+- 

From (62), (63) and the power series expansion of 5 = ( A 2 -  
cc 

5 = A +  a J - “  
n = l  

where 
a - -ib4 a ,  = 0 3 -  

etc 5 - 16b6 

a -1 2 
1 -2b  

a4 = 0 -1 

we arrive at 
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where 
s 

Cl=[  ( - b 2 + u 2 ) d x  

C3 = 

-m 

T 

( - b4 - U f; + u4) d x  
- X  

. . . .  
On the other hand, using (16) and contour integration in the region Im 5> 0 of the 
upper Riemann sheet, we have the following formula for In Sll(A, 6): 

-2 [;"arg Sl,( ik,  ( b 2 -  k2)1'2) 
dk. 

Expanding (67) in power series of A - '  we obtain 
rri k 2 + A 2  

Remembering that { A l , .  . . , A N } = { p l r . .  . , p,, u * ~ ,  . . . , u k S } ,  where p , ,  
pure imaginary, Re U, f 0 and u - ~  = -U:, we have from (68) 

From (49), (52)-(54) and (68a) we arrive at 

1 
-- 9 (2)2"+2 - JOib k2" arg S,,(ik, ( b 2 - k 2 ) 1 ' 2 )  d k  

rr (69) 

for n =0, 1 , 2 , .  . . 
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Using (19), (66) and (69) we arrive at the following expression for the Hamiltonian 
H :  

Pk dk+! * 1;” k2 arg S,,(ik, (b2-  k2)’l2) dk. (70) ( k2 + b2)Il2 n 

We now come to prove that the Hamiltonian H is a function of the momentum variables 
PA,  Pk, nu and 7, only, so that the set of canonical variables PA,  QA, Pk, qk, n,, cp,, 77, 
and +, is of action-angle type. We see that in the formula (70) the first three terms 
are functions of the momentum variables only, so we only need to consider the last 
term in (70), i.e. 

lbl 

E [ k2 arg S,,(ik, ( b 2 -  k2)’l2) dk. 
n o  

From (67) we obtain for real positive A that 

dk 
arg S,,(ik, ( b 2 -  k2)1’2) 

n k2+A2 

and for pure imaginary A (with O <  -iA < lbl) that 

2A I b l  arg S,,(ik, (b2-  k2)”*) 
dk. 

-- v i  Jb k2+A2 

Using (52)-(54) we have for real A 

A - A ?  
exp[ - (2n + 1)Pkl 

exp[ - (2n + l )n , ]  sin(2n + 1)7, (73) 
4 

n = O  A 

Substituting (73) into (71) we then obtain for real A that 

“ 1  
exp[ - (2n + 1)Pkl 

exp[ - (2n + l)n,] sin(2n + 1 ) ~ ”  

.- pk dk 
k2 

+2A I ,, ( k 2 + b 2 ) 1 ’ 2  k2-A2 

arg Sll(ik,  (b2-  k2)1’2) 
dk. k2+A2 (74) 



3586 T C Au Yeung and P C W Fung 

We see that (72) and (74) form a system of linear equations in arg SIl(A, t),  where A 
is real positive or pure imaginary (with O <  - iA < 161). In principle we can solve the 
system of linear equations (72) and (74) for arg SI,(& 6 ) .  In view of the fact that the 
coefficients of the system (72) and (74) are functions of the momentum variables PA,  
P k ,  n,, q, only, we conclude that arg S,l(A, 5 )  (where A is real positive or pure imaginary 
with O <  - iA  < Ib() are functions of the momentum variables only. Hence the last term 
in (70), i.e. 

ibl 

2 J  k2argS , , ( ik , (b2-k2)”2)dk  
T o  

is a function of the momentum variables only. 
We then conclude that the Hamiltonian H (given by (70)) is a function of the 

momentum variables PA, Pk, n, and q, only. So the set of canonical variables PA, QA, 
P k ,  qk, n,, cp,, q, and 4, is of action-angle type. Hence, under the non-vanishing 
condition (2) the M K d v  equation is completely integrable. 

5. Conclusions 

We have succeeded in showing that the M K d v  equation U, +6u2u, + U,, = 0 represents 
a Hamiltonian system under the non-vanishing condition (2), i.e. we rewrote the M K d v  

equation in the form: 

a S H  
ax Su(x) 

U =-- 

where 
X 

[u4-u:-b4]dx. 

(21) 

The Hamiltonian H [ u ]  is well defined under the non-vanishing condition and it is 
dependent on the vacuum parameter b. When b = 0 the Hamiltonian H [ u ]  is identical 
to that of the vanishing case (Flaschka and Newell 1975, Novikov et a1 1984). 

We have proved that the inverse scattering transform for the M K d v  equation under 
the non-vanishing condition is a canonical transformation. The set of canonical 
variables, denoted PA, QA, P k ,  q k ,  n,, cp,, q, and 4,,, are given by (49) and (52)-(54). 

We obtained a system of linear equations (given by (72) and (74)) in arg SII(A, t),  
where A is real positive or pure imaginary (with 0 < - iA < (bl). The coefficients of the 
system of linear equations are functions of the momentum variables PA, Pk, n, and 7, 
only. Hence we conclude that arg S,,(A, 5)t are functions of the momentum variables 
only. 

From (49) and (52)-(54) we have 

t Where A is real positive or pure imaginary (with O <  - i A  < 161). 
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Except for the sign of s2I(pk, ( ( p k ) ) t  we can recover the scattering data from the Set 
of canonical variables PA, QA, P k ,  qk, n,, qD,  77, and +,. First of all, arg Sll(A, 5) is 
determined since it is a function of the momentum variables. Also, lSII(A, 5)) is 
determined using ( 7 5 a ) .  Now since 

(18a) l S , l ( A ,  ( ) I 2 +  / S 2 1 ( A ,  ( ) I 2  = 1 

JSII(A, ( ) I 2 - I & ~ ( A ,  ( ) I 2 =  1 (18b) 

for real positive A and 

for pure imaginary A with O <  - i A  < 161, we can determine IS2,(A, ()/ and hence S21(A, 5) 
(since arg Szl(A, () is determined using ( 7 5 6 ) ) .  Also, the zeros of SII(A, () in the 
region Im (>O of the upper Riemann surface, i.e. { A l ,  A 2 , .  . . , A N )  ( =  
{pl ,..., p,,uII , . . . ,  a*s}), are determined using ( 7 6 a )  and ( 7 7 a ) .  Also, 
(s21(pk, ( ( p k ) ) (  and S 2 1 ( ~ G ,  ((U,)) are determined using ( 7 6 6 )  and ( 7 7 6 ) .  Finally, 
using ( 6 7 )  we can also determine S I I ( p k )  and Sil(au). Hence, except for the sign of 
S z l ( p k ,  ( ( p k ) ) ,  the scattering data are recovered if the canonical variables are known. 

By expanding In SI1(A, 5) in powers of 1 / A  we obtained an infinite set of conserved 
integrals C 2 n + l [ ~ ] ,  n = 0, 1,2,. . . , of the M K d v  equation under the non-vanishing 
condition (2). We noted that the Hamiltonian H[u] is given by 

H =  -fc,. ( 7 8 )  

On the other hand, using contour integrations we obtained a formula for In Sll(A, 6): 

( A  - A l )  +% ~ S , , ( A , ( ) =  In - lnlSll(k, (k2+62)1’2)1 d k  
1 = ~  A - A T  TI 0 k2-  A’ 

arg S,,(ik, ( 6 2 - k 2 ) 1 ’ 2 )  
dk. 

k2+A2 

Then, from this formula we derived an infinite system of linear equations$ in 
arg Sll(A, () (where A is real positive or pure imaginary with O <  - iA < 161). The 
coefficients of the system of linear equations are found to be dependent on the 
momentum variables PA,  pkr n, and 7, only. Hence we conclude that arg SlI(A, () 
(where A is real positive or pure imaginary with O <  - iA  < 161) are functions of the 
momentum variables only. In view of this fact and the two relations pk = i exp( -pk), 
aG = exp[ - ( n u  +iv,)]  (see ( 7 6 a )  and ( 7 7 a ) )  we conclude that the functionals c*, ,+~, 
which are the coefficients of the power series expansions of In Sll(A, 6) in A-’ ,  are 
functions of the momentum variables only. So the Hamiltonian H ( =  -fC3, see ( 7 8 ) )  
is a function of the momentum variables only. Hence the canonical variables PA, QA, 
P k ,  qk, n,, ( p u ,  7, and +!I, is of action-angle type and the M K d v  equation under the 
non-vanishing condition (2) is completely integrable. We then arrive at the conclusion 
that the inverse scattering transform for the M K d v  equation under the non-vanishing 

t In view of the fact that pk are pure imaginary, SZ,(phr t ( p h ) )  are real (see (16)). 
$See  (72)  and (74).  
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condition is a canonical transformation, and the scattering data are essentially a set 
of action-angle variables. 

Now consider those equations of the following type: 

where a,, are constants and M is a finite positive integer. Note that (79) gives the 
M K d v  equation when I [  U ]  = --$c3. In  view of the form of (79) we conclude that each 
of the equations (79) represents a Hamiltonian system, and the corresponding Poisson 
bracket is the same as that for the M K d v  equation, i.e. given by (22). Now, since the 
functionals CZn+l are functions of the action variables PA, p k ,  n, and T ] ~  only, so each 
of the equations (79) is completely integrable and has the same set of conserved 
integrals, i.e. CZn+l [~ ] ,  n = 0, 1,2 , .  . . , as the M K d v  equation under the non-vanishing 
condition (2). 

Appendix. Derivation of the canonical commutation relations 
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- A ’  
x (--ib(A’- .$’)Szl(-A, -.$)Sll(-A’, -5‘) - * r i6 ( [+5’ )  

+ib(A -&)S,,(-A, -[)Sll(-A’, -6’) - *  r i s ( t+ f ‘ ) )  

5’ 
- A ‘  

5’ 

where A and  A ‘  are either real or pure imaginary. 
From (A2) we immediately have 

{In Sll(A, 8, In S21(X‘, 5’)) 

Next, we will prove the commutation relations (43) and (44). From ( 5 a ) ,  (27) and  
(41) we have 

{ S I l ( A ,  8, S I I ( A ’ ,  5’)) 
( A ’ -  5’) - ( A  - 5) A + A ’  

855’(A - { ) ( A ’ - t ’ )  A - A ’  
.- = ib 
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( A  - 5) - - (A’ -  5‘) A + A ‘  .- - i b  855’(A -5)(A’-t’) A - A ’  
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We also obtain from (A3) that 

{S,,(A, 0, S I l ( A ’ ,  5’)) 

- A ’  
x ib(A‘-(’)S21(A, 5)S2,(A’, 5‘) - . i r iS(l+t’)  

-ib(A - 5)S2,(h, 5)S2,(A‘, 5’) 

( 5 
* .iriS((+t’) 

5 

( A  - ( ) ( A ’ -  5’) - b2 
* ( A  - A ’ )  - 

855’(A - 5 ) ( A ’  - 5’) 
A ’  

5‘ 
X [ -b2S2,(-A, -5)S2,(-A‘, -5’) a - .  .iriS(5+5’) 

Using (14) we obtain from (A4) that 

where A and A ‘  are either real or pure imaginary. Equation (A5) implies that 
{S,,(A, 0, S I I ( A ’ 9  5’)) = 0 

{In S i i ( A ,  51, In S i i ( A ’ 9  5’)) = 0. 

(A51 

(44) 
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